Research Results
Metabolic engineering of seeds can achieve levels of omega-7 fatty acids comparable to the highest level PDF Print E-mail
Written by nguyen   
Tuesday, 19 October 2010 16:04

Published on Plant Physiology Journal, October 13, 2010

Authors: Huu Tam Nguyen, Girish Mishra, Edward Whittle, Scott A. Bevan, Ann Owens Merlo, Terence A. Walsh and John Shanklin

Financial Source: This work was supported by the Office of Basic Energy Sciences of the US Department of Energy, and The Dow Chemical Company and Dow AgroSciences.


Abstract :

Plant oils containing omega-7 fatty acids (FA) (palmitoleic 16:1 delta9 and cis-vaccenic 18:1delta11) have potential as sustainable feedstocks for producing industrially important octene via metathesis chemistry. Engineering plants to produce seeds that accumulate high levels of any unusual FA has been an elusive goal. We have achieved high levels of omega-7 FA accumulation by systematic metabolic engineering of Arabidopsis thaliana. A plastidial 16:0-ACP desaturase has been engineered to convert 16:0 to 16:1?9 with specificity >100-fold that that of naturally-occurring paralogs such as that from Doxantha unguis-cati L. Expressing this engineered enzyme (Com25) in seeds increased omega-7 FA accumulation from <2% to 14%. Reducing competition for 16:0-ACP by downregulating the KASII 16:0 elongase further increased accumulation of omega-7 FA to 56%. The level of 16:0 exiting the plastid without desaturation also increased to 21%. Coexpression of a pair of fungal 16:0 desaturases in the cytosol reduced the 16:0 level to 11% and increased omega-7 FA to as much as 71%, equivalent to levels found in Doxantha seeds.

 

Introduction

There is increasing interest in the use of plant oils as renewable sources of industrial chemical feedstocks (Dyer et al., 2008; Carlsson, 2009). Recent developments in olefin metathesis have demonstrated that long chain monoene FA from vegetable oils can be efficiently split into the corresponding short chain alpha olefin and ?-alkenoic acids (Rybak et al., 2008; Meier, 2009). Thus ethenolytic metathesis of ?-7 FA such as palmitoleic or cis-vaccenic acids yields 1-octene and 9-decenoate. 1-Octene is a high-demand feedstock with a global consumption of over half a million tonnes per year that is primarily used as a comonomer in the expanding production of linear low density polyethylene. It is mainly synthesized from petroleum-derived ethylene via oligomerization to yield a complex mixture of alpha olefins, or from coal-derived syngas (Systems, 2007).

Read more click here

Last Updated on Thursday, 09 December 2010 17:38
 
«StartPrev12345678910NextEnd»

Page 5 of 22

Slider Gallery

Loading image. Please wait
3:1 non green and green seed (Zs-green gene)
3:1 non green and green seed (Zs-green gene)
BNL Biology Department
Biodiesel become clear after washing a couple of days in room temprature
Biodiesel from camelina seed (top layer) before washing with water
Biodiesel is washing with waters
Camelina plants selected by basta after 10 days
Camelina plants selecting by basta 1 week
Camelina_oil
Camelina_oil_2818_1
EXPRESSION OF THE Ds-Red GENE IN THE TRANSGENICPROTOCORM-LIKE BODY OF THE Dendrobium
Expression of gus gene in rice seed
Extract_camelina_oil
Green_red_yellow
Green_red_yellow2
John_tam
NPLC_california
Soy_astaxanthin
Soy_astaxanthin3
Steps of rice transformation
T-seeds1
T_seeds2
Tam_camelina_oil
aborted_seed_4
aborted_seeds_1_2_1
aborted_seeds_5
basta_selection1
basta_selection2
basta_selection3
diagram_fatty_acid_seed
fad2
fad2_WT
green_yellow_in_Ecoli
green_yellow_red_wt
kasII_HPAS
omega-7
pBinBarC25F5K2FatB-HP
pBinRedC25F5K2F1
plant oil conference at Texas