Research Results
Altering Arabidopsis Oilseed Composition by a Combined. Antisense-Hairpin RNAi Gene Suppression Approach PDF Print E-mail
Written by Tam Nguyen   
Friday, 06 February 2009 05:00

Tam Nguyen1 and John Shanklin1

(1) Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA

Received: 16 September 2008  Revised: 29 September 2008  Accepted: 3 November 2008  Published online: 5 December 2008

Abstract Antisense (AS) and hairpin (HP) RNA interference (RNAi) targeted gene suppression technologies have been used to modify seed oil composition. Larger numbers of AS transgenics have to be screened to achieve a targeted level of suppression compared to RNAi. We hypothesized combining AS with RNAi might result in enhanced gene suppression compared to either method individually. AS and HP-RNAi were combined as hairpin antisense (HPAS) constructs containing ~125 bp sense and antisense portions of an untranslated region of the target gene separated by an intron containing an antisense copy of a portion of the target coding region. The ?12-desaturase FAD2, the ?3-desaturase FAD3 and ?-ketoacyl-ACP synthase (KAS) II were targeted in Arabidopsis to evaluate changes in oil composition with AS, HP and HPAS constructs driven by the phaseolin promoter. Modest but statistically significant enhancements in oilseed phenotypes were observed with HPAS relative to AS and HP-RNAi. Phenotypes for HPAS suppression of FAD2 and FAD3 were indistinguishable from their strongest mutant alleles. Our data suggest that HPAS may be useful for: (1) achieving levels of suppression comparable to those of gene knockouts in a tissue specific manner. (2) Maximizing suppression of suboptimal RNAi constructs and (3) minimizing the screening of transgenics to achieve desired oilseed composition.
Last Updated on Tuesday, 19 October 2010 16:48
Read more...
 
«StartPrev11121314151617181920NextEnd»

Page 11 of 22

Slider Gallery

Loading image. Please wait
3:1 non green and green seed (Zs-green gene)
3:1 non green and green seed (Zs-green gene)
BNL Biology Department
Biodiesel become clear after washing a couple of days in room temprature
Biodiesel from camelina seed (top layer) before washing with water
Biodiesel is washing with waters
Camelina plants selected by basta after 10 days
Camelina plants selecting by basta 1 week
Camelina_oil
Camelina_oil_2818_1
EXPRESSION OF THE Ds-Red GENE IN THE TRANSGENICPROTOCORM-LIKE BODY OF THE Dendrobium
Expression of gus gene in rice seed
Extract_camelina_oil
Green_red_yellow
Green_red_yellow2
John_tam
NPLC_california
Soy_astaxanthin
Soy_astaxanthin3
Steps of rice transformation
T-seeds1
T_seeds2
Tam_camelina_oil
aborted_seed_4
aborted_seeds_1_2_1
aborted_seeds_5
basta_selection1
basta_selection2
basta_selection3
diagram_fatty_acid_seed
fad2
fad2_WT
green_yellow_in_Ecoli
green_yellow_red_wt
kasII_HPAS
omega-7
pBinBarC25F5K2FatB-HP
pBinRedC25F5K2F1
plant oil conference at Texas